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ABSTRACT 

In the  present  paper  we s t udy  some propert ies  of posit ive quasi-orders  on 

semigroups  and  us ing these  resul ts  we describe all semilat t ice  and  chain  

homomorph ic  images of a semigroup.  

Throughout this paper, the notion p o s e t  will be used as a synonym for the notion 

"partially ordered set". If ~ is a binary relation on a set A, ~-1 will denote the 

relation defined by a ~ - l b  *-* b~a, for a E A, a~ = {x E A I a~x} ,  ~a = {x E 

A I x~a} ,  for X C_ A, X~ = UxexX~,  ~ x  = Uxex~X, and the equivalence 

relations ~l and ~r on A are defined by: a~lb ~ a~ = b~; a~rby ~-~ ~a = ~b 

(a, b E A). Let ~ be a relation on a semigroup S. We will say that  ~ is p o s i t i v e  

if a ~ ab and b~ ab, for all a, b E S. If for each a E S, a2~ a, then ~ is lower-  

p o t e n t ,  and if for any a,b,c E S, a~c and b~c implies ab~c, then ~ satisfies 

the c m - p r o p e r t y  (common multiple property). By a q u a s i - o r d e r  we mean a 

reflexive and transitive binary relation. The poset of quasi-orders on a set A is 

a complete lattice and it will be denoted by Q(A). By a d iv i s ion  r e l a t i o n  on 

a semigroup S we mean a relation I defined by: for a, b E S, a I b ~ b = xay for 

some x, y E S 1. 

A congruence Q on a semigroup S is a s e m U a t t i c e  (chain)  c o n g r u e n c e  if S/Q 

is a semilattice (chain) and then S/Q is a s e m i l a t t i c e  (chain)  h o m o m o r p h i c  

i m a g e  of S. When ~ is the smallest semilattice congruence on S, S/Q will be 

called a g r e a t e s t  s e m i l a t t i c e  h o m o m o r p h i c  i m a g e  of S. 
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An ideal I of a semigroup S is c o m p l e t e l y  s e m i p r i m e  if for a E S, a 2 C I 

implies a E I, and it is c o m p l e t e l y  p r i m e  if for a, b E S, ab E I implies a E I 

or b E I. By l d ( S )  we will denote the lattice of all ideals of a semigroup S and 

Zdcs(S) will denote the lattice of all completely semiprime ideals of S. A subset 

A of a semigroup S is cons i s t en t  if for a, b E S, ab E A implies a, b E A. A 

consistent subsemigroup of S will be called a f i l ter  of S. Clearly, a subset A of 

a semigroup S is consistent if and only if S - A is an ideal of S, and A is a filter 

if and only if S - A is a completely prime ideal of S. 

For undefined notions and notations we refer to [1], [9] and [16]. 

Positive quasi-orders on semigroups have been studied from different points 

of view by B. M. Schein [14], W. Wamura [17-20], M. S. Putcha [10-12] and the 

others. Their connections with semilattice decompositions of semigroups were 

investigated the most seriously. T. Tamura [20], by the theorem quoted below as 

Tamura's theorem, established an isomorphism between the complete lattices of 

all semilattice congruences of a semigroup and their positive quasi-orders satisfy- 

ing the cm-property. The smallest elements of these posets, and related greatest 

semilattice decomposition of a semigroup, were studied systematically in papers 

of T. Tamura [17-20], M. S. Putcha [11], M. Petrich [8, 9] and by the authors [3, 

4]. The greatest semilattice homomorphic image of a semigroup was described 

by the authors in [4]. 

In this paper we study yet other aspects of positive quasi-orders of semigroups 

and using these results we describe all semilattice (chain) homomorphic images 

of a semigrout). 

First we will quote the following two results. The first part of Proposition 1 

((i)-(iii)) was proved by G. Birkhoff in [1]. 

PROPOSITION 1: Let ~ be a quasi-order of a set A. Then 

(i) ~ =  ~ M ~-1 is an equivalence relation on A; 

(ii) i f  E and F are two equivalence classes for ~, then x ~y either for no 

x E E, y E F or for all x E E, y E F; 

(iii) the quotient-set S / ~  is a poser i r E  <_ F is defined to mean that x ~ y  for 

some (hence all) x E E, y E F; 

(iv) for a, b E A, a ~ b implies b~ c_ a~, ~a C_ ~b; 

( v )  = = 

The next theorem is another form of Theorem 3.1 of T. Tamura [20]. As in the 
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proof of Theorem 4.9 of the same paper T. Tamura noticed the lower-potency 

and compatibility of a positive quasi-order can be replaced by the cm-property. 

TAMURA'S THEOREM: The poser of positive quasi-orders on a semigroup S 

satisfying the cm-property and the poser of semilattice congruences on S are 

isomorphic complete lattices. An isomorphism between these lattices is the 

mapping ~ F-. ~. 

LEMMA 1: The following conditions for a quasi-order ~ on a semigroup S are 

equivalent: 

(i) ~ is positive; 

(ii) (Ya, b E S) (ab)~ C_ a~ M b~; 

(iii) (re, b E S) (a U (b C_ ~(ab); 

(iv) a~ is an ideal of S, for each a E S; 

(x;) ~a is a consistent subset of S, for each a E S. 

Proof: We will prove only (iii) ~ (iv). The rest of the theorem can be proved 

similarly. Assume a E S, y E a~, x E S. Then a E ~y C_ ~(xy), so xy E a~. 

Similarly, yx E a~. Thus, a~ is an ideal of S. I 

A subset K of a lattice L is c losed for  m e e t s  (joins) if whenever a subset 

of K has a meet (join) in L, then this meet (join) lies in K,  and it is c losed  if 

it is closed both for meets and joins. Clearly, any closed subset of a lattice is 

its sublattice. If L is a lattice with the unity, then any closed sublattice of L 

containing its unity will be called a c o m p l e t e l y  c losed  sublattice of L. It is 

easy to verify that  the completely closed sublattices of a lattice with the unity 

forms a complete lattice. 

Consider a semigroup S and a completely closed subset K of 7.d(S). For any 

a E S, the family of all elements of K containing a is non-empty and the meet of 

this set, in notation K(a) ,  lies in K,  so K(a) will be called a p r i n c ip a l  e l e m e n t  

of K generated by a and the set {K(a)  I a E S} will be called a p r i n c i p a l  

p a r t  of K.  For example, principal elements of Zd(S) are exactly the principal 

ideals of S. Principal elements of 27d cs (S), called the principal radicals of S, were 

described by the authors in [4]. Principal elements of the Boolean sublattice of 

all 0-consistent ideals of a semigroup with zero, called the principal 0-consistent 

ideals, have the important  role in orthogonal decompositions of semigroups with 

zero (see [21). 
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The following theorem characterizes positive quasi-orders on a semigroup in 

terms of completely closed sublattices of ideal lattices. 

THEOREM 1: The poset of positive quasi-orders on a semigroup S is a complete 

lattice and it is dually isomorphic to the lattice of completely closed sublattices 

ofZd(S). 

Proof As M. S. Putcha [10] mentioned, a quasi-order on a semigroup S is 

positive if and only if it contains the division relation on S, whence the set of 

positive quasi-orders on S is a principal dual ideal of Q(S) generated by the 

division relation on S, and hence it is a complete lattice. 

Let ~ be a positive quasi-order on S and let 

(1) K~ = { I  E Zd(S) ] I~ = I} .  

Clearly, a~ E K~, for any a E S, S E K~ and K~ is closed for joins. Further, 

let {Is I a E Y} be asubset  o fK~ having a meet I i n Z d ( S ) .  For a E I w e  

have that  a E Is,  whence a~ C_ I ~  = Is,  for any a E Y, so a~ C_ I. Thus, 

I~ -- U~eI a~ c_ I, whence I~ = I and I E K~. Hence, K~ is closed for meets, so 

it is a completely closed sublattice of Zd(S). Also, it is clear that K~(a) = a~, 

for any a E S. 

Let K be a completely closed sublattice of Zd(S). Define a relation ~ on S by: 

(2) a~b ~ K(b) C_K(a) (a, bES) .  

It is easy to verify that ~ is a quasi-order on S and that a~ = K(a), for any 

a E S, so by Lemma 1, ~ is positive. I f / E  K and x E I~, then a~x, for some 

a E I, s o x  e K(x) C_ K(a) C_ I, whenceI~ C_ I , i . e .  I ~ =  I, and therefore, 

K C_ K~. Conversely, if I E K{, then I = I{ = Uael a{ = UaEI K(a) E K, since 

K is closed for joins, so K{ C_ K. Therefore, K = Kr so the mapping { ~ K{ 

maps the lattice of positive quasi-orders on S onto the lattice of completely closed 

sublattices of Zd(S). 

~ r t h e r ,  consider positive quasi-orders { and T on S. If { C T, then by I E Kn 

it follows that  I{ = Uael a{ C_ U~el aT = IT = I, whence I = I{ and hence 

I E Kr Conversely, by Kn C_ K{ it follows that a{ = K{(a) = Kn(a) = aT, for 

each a E S, whence { C_ T. Therefore, { C_ T if and only if Kn C_ K~, whence the 

mapping { ~ K{ is a dual order-isomorphism, so by the dual of Lemma II 3.2 

[1], it is a dual lattice-isomorphism. I 
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THEOREM 2: The poser of lower-potent positive quasi-orders on a semigroup S 

is a complete lattice and it is dually isomorphic to the lattice of completely closed 

sublattices of Zd cs ( S). 

Proof As T. Tamura [18] proved, the poset of lower-potent positive quasi-orders 

on S has a smallest element #, by Theorem 1, any quasi-order on S containing 

# is positive, since it also contains the division relation on S, and clearly, it is 

lower-potent. Therefore, the set of lower-potent positive quasi-orders on S is a 

principal dual ideal of Q(S) generated by #, and hence, it is a complete lattice. 

Let ~ be a positive quasi-order on S. To establish an isomorphism between the 

lattice of lower-potent positive quasi-orders on S and the lattice of completely 

closed sublattices of Zdcs(S) it is sufficient to prove that ( is lower-potent if and 

only if K~ C Zdcs(S). Let ( be lower-potent. Then for a ,x  E S, by x 2 E a~ it 

follows that  a ( x 2 ~ x, so a ~ x, i.e. x E a~. Therefore, a~ is completely semiprime, 

for each a E S, whence K~ c Zd cs (S). Conversely, if K~ C_ Zd cs (S), then a2~ 

is completely semiprime, whence a E a2~, i.e. a2(  a, for each a E S, so ( is 

lower-potent. I 

LEMMA 2: The following conditions for a quasi-order ~ on a semigroup S are 

equivalent: 

(i) ( is positive and satisfies the cm-property; 

(ii) ~a is a filter of S, for each a E S; 

(iii) (Va, b E S) a~ N b~ = (ab)~. 

Proof'. (i) ~ (ii). For a E S, ~a is a subsemigroup of S, so by Lemma 1, ~a is 

a filter of S. 

(ii) ~ (iii). Assume a,b E S. If x E a~ N b~ then a,b E ~x, so ab E ~x, i.e. 

x E (ab)~, since ~x is a subsemigroup of S. Conversely, if x E (ab)~ then ab E ~x, 

whence a, b E ~x, i.e. x E a~ N b~, since ~x is consistent. Hence, (iii) holds. 

(iii) ~ (i). By Lemma 1, ~ is positive, and clearly, ~ satisfies the cm-property. 

I 

A subset A of a lattice L is m e e t - d e n s e  in L if any element of L can be 

represented as a meet of some subset of A. We will say that  a sublattice K of 

:[dr (S) satisfies the c p i - p r o p e r t y  (c~mpletely prime ideal-property) if the set of 

all completely prime ideals of S that are elements of K is meet-dense in K. Note 

that  this property is very significant in theories of semigroups, rings and lattices. 
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For semigroups, this condition was proved for the lattice Zdr in some special 

cases by S. Schwarz [15] and K. Is~ki [5], and in the general case by M. Petrich 

[9]. The same result, without use of Zorn's lemma arguments, was proved by the 

authors in [4]. The related result in the theory of lattices is known as the prime 

ideal theorem, and for the related results for rings we refer to W. Krull [6] and 

N. H. McCoy [7]. By the following theorem we establish a connection between the 

cm-proper ty  for positive quasi-orders and the cpi-property for related completely 

closed sublattices of Zd~(S). 

THEOREM 3: The poset of positive quasi-orders on a semigroup S satisfying the 

cm-property and the poset of completely closed sublattices of Zd ~ ( S) satisfying 

the cpi-property are dually isomorphic complete lattices. 

Proof'. Let P denote the poset of positive quasi-orders on S satisfying the cm- 

property and let p i  denote the poset of completely closed sublattices of Zdcs(S) 

satisfying the cpi-property. Consider a mapping ~ ~ K~, ~ E P,  defined as in 

Theorem 1. To prove that  this mapping is a dual order-isomorphism of P onto 

pt ,  it is sufficient to prove that  a positive quasi-order ~ on S satisfies the cm- 

proper ty  if and only if K~ satisfies the cpi-property. In order to simplify our 

notations, let K -- K~. 

Let ~ satisfy the cm-property. Assume a E S. By Lemma 2, S - ~a is a 

completely priene ideal of S. Assume x E S - ~a, y E x~. If  y ~ S - ~a, i.e. 

y E ~a, then y~a, so by x ~ y  we obtain x~a, i.e. x E ~a, which contradicts our 

start ing hypothesis. Hence y E S - ~a, so x~ c_ S - ~a, for each x E S - ~a. Thus 

S - ~a = U~es-~a x~. Therefore, S - ~a E K,  for each a E S. 

Assume an arbitrary I E K.  Let us prove that  I --- Aaes_I(S - ~a). If  x E I 

and x ~t S -  ~a, i.e. x E ~a, for some a E S -  I ,  then a E x~ _C I ,  which is in 

contradiction with a E S - I .  Therefore, I C_ AaeS_i(S - ~a). On the other 

hand, if x E ~aes_i(S  - ~a) and x ~ I ,  then x E S - I ,  whence x E S - ~x, i.e. 

x r ~x, which is not true. Thus, ~aes_x(S-~a)  c_ I. Hence, I is the intersection 

of a family of completely prime ideals from K,  so K satisfies the cpi-property. 

Conversely, let K satisfy the cpi-property. Assume a, b E S. Then K(ab) = 

~ e y  P~, where P~, a E Y, are completely prime ideals of S and elements of 

K.  Let U = { a E Y [ a E P ~ } ,  V - - { / 3 E Y I b E P z } .  For e a c h c ~ E Y ,  a b E P ~ ,  

whence a E P~ or b E P~, since P~ is completely prime, so Y = U U V. Also, 

without loss of generality we can assume that  U r 0 and V r 0 (for example, we 
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can assume that S is one of P~). For each (~ E U, a E P~ implies K(a) C_ P~, 

since P~ E K, so K(a) C_ ~ E u  P~" Similarly, K(b) C N3Ev Pz" Hence 

\c~EU / \I3EV / e~EY 

SO by (2) we obtain that  ~ satisfies the cm-property. 

Therefore, P and P '  are dually isomorphic posers, and P is a complete lattice, 

so P'  is also a complete lattice. | 

By Lemma 2, the principal part of the lattice Kf corresponding to a posi- 

tive quasi-order ~ on a semigroup S is a meet-subsemilattice of K{ and it is a 

homomorphic image of S. Now we go to the main theorem 

THEOREM 4: A semilattice Y is a semilattice homomorphic image ofa semigroup 

S if and only if it is isomorphic to the principal part of some completely closed 

sublattice of Zd es ( S) satisfying the cpi-property. 

Especially, the principal part of Zd r (S) is the greatest semilattice homomor- 

phic image of S. 

Proo~ This follows by Tamura's theorem and by Theorem 3. I 

Also, we will characterize quasi-orders that produce decompositions into a 

chain of semigroups. 

LEMMA 3: The following conditions for a quasi-order ~ of a semigroup S are 

equivalent: 

(i) ~ is positive, linear and satisfies the cm-property; 

(ii) ~ is positive and for all a, b E S, ab ~ a or ab ~ b; 

(iii) a( is a completely prime ideal of S, for each a E S; 

(iv) (re, b E S) (a U (b = ~(ab). 

Proof." (i) ~ (ii). Assume a, b E S. By (i), a ~ b or b ~ a. Assume that  a (b. 

Then a, b E (b, so by Lemma 2, ab E (b, i.e. ab ~ b. Similarly we prove that  b ~ a 

implies ab ~ a. 

(ii) ~ (iii). Assume a E S. By Lemma 1, a( is an ideal of S. Assume x, y E S 

such that xy E a~, i.e. a~xy .  Then by (ii), a ( x  or a ( y ,  i.e. x E a~ or y E a~. 

Thus, (iii) holds. 
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(iii) ~ (iv). Assume a,b E S. By Lemma 1, ~a U ~b C ~(ab). Assume 

x E ~(ab). Then x~ab, i.e. ab E x~, so by (iii), a E x~ or b E x~, i.e. x E ~a or 

x E ~b. Thus, ~(ab) C_ ~a U ~b. 

(iv) ~ (i). By Lemma 1, ~ is positive. Assume a E S, x ,y  E ~a. Then 

xy E ~(xy) = ~x U ~y C_ ~a, by (iv) and by Proposition 1. Therefore, ~a is a 

subsemigroup of S, for each a E S, so by Lemmas 2 and 4 we obtain that  r is 

positive and ~ satisfies the cm-property. Finally, for a, b E S, by (iv), ab E ~a or 

ab E ~b. Since ~a and ~b are filters, then b E ~a or a E ~b, so ~ is linear. I 

Using Lemma 3 and Tamura 's  theorem, we obtain the following 

PROPOSITION 2: The poser of positive, linear quasi-order of a semigroup S 

satisfying the cm-property is isomorphic to the poser of chain congruences on 

S. 

LEMMA 4: Let I and J be two ideals of a semigroup S such that I N J is 

completely prime. Then I C_ J or J C I. 

Proof: Suppose that  there exists a E I - J, b E J - I .  Since I and J are ideals, 

ab E I ~ J, whence a E I A J or b E I N J,  since I A J is completely prime. Thus, 

we obtain that  a E J or b E I ,  which contradicts our starting hypothesis. Hence, 

I C _ J o r J C _ I .  I 

The following theorem characterizes positive, linear quasi-orders satisfying the 

cm-property in terms of completely prime ideals. 

THEOREM 5: The following conditions for a positive quasi-order ~ on a semigroup 

S are equivalent: 

(i) ~ is linear and satisfies the cm-property; 

(ii) ~ satisfies the cm-property and the poser of all completely prime ideals 

from K~ is a chain; 

(iii) K( consists of completely prime ideals. 

Proof: (i) ~ (iii). This follows by Lemma 3 and by the definition of K~. 

(iii) ~ (ii). This follows by Theorem 3 and by Lemma 4. 

(ii) ~ (i). Assume a, b E S. By Lemma 2, ~a and ~b are filters, i.e. I = S - ~ a  

and J = S - ~b are completely prime ideals of S. By the proof of Theorem 3, 

I, J E K~, so by (ii), I C_ J or J _C I. Thus, ~b C_ ~a or ~a _C ~b, so ~ is linear. 

I 
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THEOREM 6: A chain Y is a chain homomorphic image of a semigroup S i f  and 

only i f  it is isomorphic to the principal part of some completely closed sublattice 

of  :YdCS( S) consisting of  completely prime ideals. 

Proof." This follows by Theorem 4, Proposi t ion 2 and by Theorem 5. | 
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